
Obliq March 17, 2003 4:59 pm 1 of 49

Distributed Mobile Computation in

Luca Cardelli
Digital Equipment Corporation

Systems Research Center



Obliq March 17, 2003 4:59 pm 2 of 49

Abstract
Obliq is lexically-scoped, untyped, interpreted language that supports distributed object-orient-
ed computation. Obliq objects have state and are local to a site. Obliq computations can roam
over the network, while maintaining network connections. Distributed lexical scoping is the key
mechanism for managing distributed computations.



Obliq March 17, 2003 4:59 pm 3 of 49

Distributed Scripting
• Scripting languages are (normally) interpreted languages used to coordinate applications.

They are particularly popular for connecting system services (programmed in “real languag-
es”) to human interfaces (non-programmable). They are supposed to be used mostly by end-
users and system managers.

• Recently, scripting languages have emerged for coordinating activities in distributed environ-
ments: for telecollaboration, telemarketing, navigation, etc.

• Scripting languages are often used to coordinate applications that are written in normal lan-
guages. However, there are situations in which a scripting language, with its libraries and user
interface capabilities, can be used to program an entire application; even a distributed one.



Obliq March 17, 2003 4:59 pm 4 of 49

What Makes a Good Distributed Scripting 
Language?
• The intended computation paradigm is based on distributed objects and roaming agents. This

is qualitatively new, and exposes new problems. 

• For example, a piece of code can run for a while on a machine and then migrate to, or ex-
change data with, another machine over the network (with a different processor, byte order,
OS, etc.). 

• The purpose of distributed scripting languages is then to overcome the difficulties arising
from heterogeneity and distribution, to make the network as transparent as possible, and to
facilitate the use of network resources. 

• The goal is to obtain a language than can use distributed (say, Internet) resources as easily
and securely as a conventional language can use local resources. 



Obliq March 17, 2003 4:59 pm 5 of 49

Obliq Language Overview
• Distributed computation � network objects (i.e. network interfaces). Obliq supports objects

in this spirit, relying for its implementation on Modula-3's network objects [5].

• Simple and powerful object primitives. Coherence between local and distributed semantics.
Objects are collections of named fields, with four basic operations: selection/invocation, up-
date/override, cloning, and redirection. (No class or delegation hierarchies, no complex meth-
od-lookup procedures). 

• Every object is potentially and transparently a network object. An object may become acces-
sible over the network either by the mediation of a name server, or by simply being used as
the argument or result of a remote method.



Obliq March 17, 2003 4:59 pm 6 of 49

• Obliq objects are local to a site and are never automatically copied over the network. In con-
trast, network references to objects can be transmitted from site to site without restrictions.
Object migration can be coded from cloning and redirection.

• Obliq computations (closures, not source text) can be freely transmitted. Lexically scoped
free identifiers retain their bindings to the originating sites. Through these free identifiers, mi-
grating computations (agents) can maintain connections to objects and locations residing at
various sites. Disconnected agents can be represented as procedures with no free identifiers.

• To concentrate on distributed computing issues, Obliq is designed as an untyped language.
The language is in principle suitable for static typing.

• Obliq is strongly typed at run-time: erroneous computations produce clean errors and excep-
tions that are correctly propagated across sites. 



Obliq March 17, 2003 4:59 pm 7 of 49

Distributed Lexical Scoping
• Obliq [11] extends a familiar language feature, lexical scoping, to a distributed context. The

situation is analogous to the extension of local procedure call to remote procedure call, but
more general. In Obliq, procedures can be not only invoked, but also transmitted, over the
network. Thanks to distributed lexical scoping, these roaming computations have a precise
meaning which is site-independent (except for site-dependent data they receive as argu-
ments), and therefore have a predictable behavior.

• The main technical issue is to find a meaning for higher-order distributed computations (e.g.
as in a compute server receiving a procedure to execute): what happens to the free identifiers
of network-transmitted procedures? Obliq takes the view that such identifiers are bound to
their original locations and network sites, as prescribed by lexical scoping.

• Remote execution is nothing new. But, so far, all proposals either (A) restrict the ability to
pass over the network procedures that have free identifiers or procedure parameters, (B)
adopt dynamic scoping for those free identifiers, or (C) pass program text instead of active
computations.



Obliq March 17, 2003 4:59 pm 8 of 49

Objects
An object is a collection of named fields:

{l1 => a1, ... ,ln => an}

Value fields contains values:

l => 3

Method fields contain methods of the form (where x is “self”):

l => meth(x,x1, ... ,xn) b end

Alias fields contain aliases that redirect operations to other objects:

l => alias l’ of o’ end



Obliq March 17, 2003 4:59 pm 9 of 49

Object Operations

Select and Invoke
a.x value selection
a.x(b1, ... ,bn) method invocation

Update and Override 
a.x := b field update / method override

Cloning
clone(a) “shallow copy” of  a
clone(a1, ... ,an) concatenation (inheritance)

Redirection
redirect a1 to a2 end Further operations on fields of a1 are 

redirected to similar fields of a2



Obliq March 17, 2003 4:59 pm 10 of 49

Example
let o =

{ x => 3,
inc => meth(s,y) s.x := s.x+y; s end,
next => meth(s) s.inc(1).x end }

o.x

o.x := 0

o.inc(1)

o.next (or o.next())

o.next := meth(s) clone(s).inc(1).x end



Obliq March 17, 2003 4:59 pm 11 of 49

Network objects
An object can be initially shared through a name server:

Site A:

 (1) net_export("myObj",Namer,{m1 => a1, ... ,mn => an});

Site B:

 (2) let o = net_import("myObj",Namer);
 (3) o.m1(b);

{m1 => a1, ... ,mn => an}

A B

Namer

"myObj"

o = 

(2)(1)

(3)



Obliq March 17, 2003 4:59 pm 12 of 49

Lexical Scoping and Closures
var x = 0;
let f = proc() x := x+1; x end;
f(); (* = 1 *)

In a higher-order language, a procedure value (a closure) may escape the scope of its free iden-
tifiers. But the closure retains the appropriate identifier bindings.

let g = proc()
var x = 0;
proc() x := x+1; x end;

end;
let f = g();
f(); (* = 1 *)

In a distributed language a procedure value may escape not only the scope of its free identifiers,
but even their address space.

x =

proc() x:=x+1; x end 
where x = 

0



Obliq March 17, 2003 4:59 pm 13 of 49

Legend

Network Sites

Mutable locations

Closures

{      } Objects

Run-Time Data Structures

x = ... Bindings

References (local or remote)

S

...

...

...

Immutable locations...

E

Engines

Communication

Any data structure

Code

Site Data



Obliq March 17, 2003 4:59 pm 14 of 49

Value Transmission
On transmission, values are copied up to their embedded mutable locations; local pointers to
mutable locations are converted to network pointers. 

This rule applies, in particular, to the transmission of closures:

From

Transmit

To

To From
proc  ...x... end 
where  x =  

x = 

proc  ...x... end 
where  x =  

Transmit



Obliq March 17, 2003 4:59 pm 15 of 49

• Obliq data is network-transparent: immutable data may be duplicated, but state is never au-
tomatically duplicated. (Cloning allows explicit state duplication.)

• Obliq computations are network-transparent. Their effect on free variables is the same no
matter where they execute. (However, procedures may receive different parameters at differ-
ent sites.)

• Obliq programs are network-aware. Distribution is achieved by explicit acts, which give full
control on allocations sites and execution sites. It is possible (in principle) to figure out what
is happening where.

• Distributed lexical scoping makes it easy to distribute computations over multiple sites. Even
when execution is carried out at the wrong place (by some measure) it behaves correctly. 

• This flexibility in distribution has a down side: the resulting network traffic may be hard to
predict or understand. Satisfactory distributed performance still requires care and planning.



Obliq March 17, 2003 4:59 pm 16 of 49

Distributed Techniques
What follows is a consequence of the distributed semantics just explained.

Compute Servers / Remote Execution Engines.

Remote Agents.

Agent Migration.

Object Migration.

Safe Execution.

Application Partitioning.

Application Servers.

Application Migration.



Obliq March 17, 2003 4:59 pm 17 of 49

Remote Execution Engines
A remote execution engine is a built-in compute server for Obliq programs. It accepts Obliq pro-
cedures (that is, procedure closures) from the network and executes them at the engine site. An
engine can be exported from a site via the primitive:

net_exportEngine("Engine1@Site1", Namer, arg); 

The "arg" parameter is supplied to all the client procedures received by the engine. Multiple
engines can be exported from the same site under different names. 

A client may import an engine and then specify a procedure to be execute remotely. An imported
engine behaves like a procedure of one argument:

let atSite1 =
  net_importEngine("Engine1@Site1", Namer);

atSite1(proc(arg) 3+2 end);



Obliq March 17, 2003 4:59 pm 18 of 49

Before transmission:

After transmission:

atSite1 = 

proc (arg) body  end 
where  bindings  

Site1

E Site Data

Site1

E Site Data

body  
where  arg =  
  bindings  



Obliq March 17, 2003 4:59 pm 19 of 49

Remote Agents
Compute servers and execution engines can be used as general object servers. That is, as ways
of allocating objects at remote sites. These objects can then act as agents of the initiating site. 

Suppose, for example, that we have an engine at a database server site. The engine provides the
database as an argument to client procedures:

(* DataBase Server Site *)

net_exportEngine("DBServer", dataBase, Namer);

A database client could send over procedures performing queries on the database. However, for
added flexibility, the client can instead create a remote object:



Obliq March 17, 2003 4:59 pm 20 of 49

(* DataBase Client Site *)

let atDbServer =
  net_importEngine("DBServer", Namer);

let searchAgent =
  atDbServer(

    proc(dataBase)
      {state => ...,
       start => meth ... end,
       report => meth ... end,
       stop => meth ... end} 
    end);

The execution of the client procedure causes the allocation of an object at the server site with
methods "start", "report", and "stop", and with a "state" field. The server simply re-
turns a network reference to this object, and is no longer engaged. 



Obliq March 17, 2003 4:59 pm 21 of 49

Before the invocation:

After its completion:

atDbServer = 

proc(dataBase) 
  {state => ..., 
   start => meth...end, 
   report => ..., 
   stop => ...}  
end

DbClient DbServer

E DataBase

atDbServer = 

DbClient DbServer

E DataBase

{state => ..., 
 start => 
  
 report => ..., 
 stop => ... }

meth...end 
where dataBase = 

searchAgent = 



Obliq March 17, 2003 4:59 pm 22 of 49

Agent Hopping
An agent is a computation that may hop from site to site over the network.

• A suitcase is a piece of data that an agent carries with it as it moves.

• A briefing is data that an agent receives at each site, as it enters the site.

• An agent server, for a given site, is a program that accepts code over the network, executes
the code, and provides it with a local briefing.

• A hop instruction is used by agents to move from one site to the next. This instruction has as
parameters an agent server, the code of an agent, and a suitcase. The agent and the suitcase
are sent to the agent server for execution.

• Finally, an agent is a user-defined piece of code parameterized by a suitcase and a briefing.
All the data needs of the agents should be satisfied by what it finds in either the suitcase or
the briefing parameters.

If an agent has a user interface, it takes a snapshot of the interface, stores it in the suitcase during
the hop, and rebuilds the interface from the snapshot at the destination.



Obliq March 17, 2003 4:59 pm 23 of 49

In Obliq, agents, suitcases, briefings, and hop instructions are not primitive notions. They can
be fully understood in terms of the Obliq network semantics.

Agent are just procedures of two parameters. Suitcases and briefings are arbitrary pieces of data,
such as objects. 

let rec agent = 
proc(suitcase, briefing) 

(* work at the current site *)

(* decide where to go next *)

...

hop(nextSite, agent, suitcase); 

(* run agent at nextSite with suitcase *)

end;

Each agent is responsible for the contents of its suitcase, and each agent server is responsible for
the contents of the briefing. Agent servers are simple compute servers whose main task it to run
agents and supply them with appropriate briefings (and maybe check the agent’s credentials).



Obliq March 17, 2003 4:59 pm 24 of 49

The hop instruction can be programmed in Obliq as follows:

let hop = 
proc(agentServer, agent, suitcase)

agentServer(

(1) proc(briefing) 
fork(

(2) proc() 
(3) agent(copy(suitcase), briefing);

 end);
ok

 end);
end;

• Fork: fork a thread.

• Copy: make a complete local copy of a possibly distributed structure.



Obliq March 17, 2003 4:59 pm 25 of 49

Suppose a call hop(agentServer, agent, suitcase) is executed at a source site. Here, agentServer
is (a network reference to) a remote compute server at a target site.

The call agentServer(...) has the effect of shipping the procedure (1) to the remote agent server
for execution. At the target site, the agent server executes the closure for procedure (1) by sup-
plying it with a local briefing. 

Next, at the target site, the execution of the body of (1) causes procedure (2) to be executed by
a forked thread. Immediately after the fork instruction, procedure (1) returns a dummy value
(ok), thereby completing the call to hop that originated at the source site. 

proc(briefing) 
  fork(    )  
end 
where agent =  
and suitcase =  

ASagentServer = 

TargetSource

Briefing

proc(suitcase,      
     briefing) 
    
end 

Suitcase

Continuation

(1)

Transmit
(2)



Obliq March 17, 2003 4:59 pm 26 of 49

The source site is now disengaged, while the agent computation carries on at the target site. At
the target site, the forked procedure (2) executes copy(suitcase). The suitcase, at this point of the
computation, is usually a network pointer to the former suitcase that the agent had at the source
site.

The copy instruction (an Obliq primitive) makes a complete local copy of any local or distrib-
uted data.

AS

TargetSource

Briefing

proc(suitcase,      
     briefing) 
    
end 

Suitcase

Continuation

agent(copy(suitcase),      
      briefing) 
where briefing =   
and agent =  
and suitcase =  

(3)

Copy



Obliq March 17, 2003 4:59 pm 27 of 49

Thus, copy(suitcase) is a suitcase whose state is local to the target site, suitable for local use by
the agent. 

After the copying of the suitcase, the agent migration is complete. The source site could now
terminate or crash without affecting the migrated agent.

Finally (3), the agent is invoked with the local suitcase and the local briefing as parameters. The
program text of the agent was copied over as part of the closure of procedure (1). Since the agent
has no free variables, it can execute locally. 

In the special case when the suitcase contains the entire application state, we have a migratory
application.

AS

TargetSource

Briefing

Continuation 
where briefing =   
and suitcase =  

Suitcase



Obliq March 17, 2003 4:59 pm 28 of 49

Object Migration
This example uses a remote execution engine to migrate an object between two sites. First we
define a procedure that, given an object, the name of an engine, and a name server, migrates the
object to the engine’s site. Migration is achieved in two phases: (1) by causing the engine to re-
motely clone the object, and (2) by redirecting the original object to its clone.

let migrateProc =
  proc(obj, engineName)
    let engine = net_importEngine(engineName, NS);
    let remoteObj = engine(proc(arg) clone(obj) end);
    redirect obj to remoteObj end;
    remoteObj;

  end;

After migration, all operations on the original object are redirected to the remote site, and exe-
cuted there.



Obliq March 17, 2003 4:59 pm 29 of 49

Before the engine invocation:

Before cloning:

proc(arg) 
  clone(obj)  
end 
where obj =  

Eengine = 

obj = {       }

Site1Site0

Site Data

Site1

E

clone(obj) 
where obj =  , arg = 

Site Data

Site0

obj = {       }

engine = 



Obliq March 17, 2003 4:59 pm 30 of 49

After  cloning:

After  redirection:

Site1

E Site Data

Site0

obj = {       }

engine = 

{       }remoteObj = 

Site1

E Site Data

Site0

obj = {       }

engine = 

{       }remoteObj = 



Obliq March 17, 2003 4:59 pm 31 of 49

It is critical that the two phases of migration be executed atomically, to preserve the integrity of
the object state. This can be achieved by serializing the migrating object, and by invoking the
"migrateProc" procedure from a method of that object, where it is applied to self:

let obj1 =
  { serialized, protected,
    ...

    migrate =>
      meth(self, engineName)
        migrateProc(self, engineName);

      end};

let remoteObj1 = obj1.migrate("Engine1@Site1")

Because of serialization, the object state cannot change during a call to "migrate". The call
returns a network reference to the remote clone that can be used in place of "obj1" (which, any-
way has been redirected to the clone).

Migration permanently modifies the original object, redirecting all operations to the remote
clone. In particular, if "obj1" is asked to migrate again, the remote clone will properly mi-
grate.



Obliq March 17, 2003 4:59 pm 32 of 49

We can avoid accumulating aliasing indirections if the migrating object "obj1" is publicly
available through a name server. The "migrate" method can then register the migrated object
with the name server under the old name:

let obj1 =
  net_export("obj1", NS,

    { serialized, protected,
      ...

      migrate =>
        meth(self, engineName)
          net_export("obj1", NS, 

            migrateProc(self, engineName));

        end};

This way, old clients of "obj1" go through aliasing indirections, but new clients acquiring
"obj1" from the name server operate directly on the migrated object.



Obliq March 17, 2003 4:59 pm 33 of 49

Safe Execution
Operations that may affect critical resources require capabilities, which are bound to global lex-
ically-scoped identifiers at each site:

rd_open(fileSys, "/etc/passwd");

process_new(processor, ["rm", "*"], true);

Because of lexical scoping, capabilities at other sites are not visible to migrating procedures.
Those capabilities can be obtained only with server cooperation.

atEngineSite(

  proc(arg)
    let file1 = rd_open(fileSysReader, "to-do-list");
    let file2 = rd_open(arg.publicFileSys, "test");
    ...

  end);

Restricted access privileges can be modeled by different capabilities. Above, fileSysRead-
er refers remotely back to the client file system in read-only mode (it does not refer to the com-
pute server file system). A client-accessible file system may be provided by the server through
the arg parameter.



Obliq March 17, 2003 4:59 pm 34 of 49

Modula-3 Network Objects
• The Obliq implementation is based on the Modula-3 Network Objects library (A.D.Birrell,

G.Nelson, S.Owicki, E.Wobber [5]). This library supports remote method calls (RPC for ob-
jects) by providing simple name services, transport for Modula-3 data tapes (except proce-
dures), stub generation, and distributed garbage collection. 

• A language like Obliq is easy to implement on top of such a library. In fact, Obliq would nev-
er have been conceived without it. 

• Vice versa, a network-objects library should make it easy to implement a language like Obliq,
as a test of completeness. This not the case for most or all other network-object libraries.



Obliq March 17, 2003 4:59 pm 35 of 49

Distributed Runtime
These are the features that one should come to expect from a good distributed runtime. Given
these features, it is straighforward to implement a language like Obliq:

• Network objects.

• Marshalling/pickling of arbitrary data structures.

• Distributed garbage collection.

• Correct error propagation.

• Unforgeable network pointers (secure capabilities).

• Network identities (for access control lists).

Modula-3 Network Objects provide these features (the last two are part of an unreleased ver-
sion).



Obliq March 17, 2003 4:59 pm 36 of 49

Uses of Obliq
• As a scripting language for a user-interface toolkit (M.H.Brown, J.R.Meehan [7]) including

digital video (S.M.G.Freeman, M.S.Manasse [10]).

• As a scripting language for algorithm animation (M.H.Brown [6]).

• As a scripting language for 3D graphics (M.Najork, M.H.Brown [11,12]).

• The underlying language of Visual Obliq, a distributed-application and user-interface builder
(K.Bharat, M.H.Brown [2]).

• As a language enabling dynamic application migration (K.Bharat, L.Cardelli [3,4]).

• As an experimental client of secure network objects (M.Abadi, L.vanDoorn, T.Wobber), for
secure scripting (future work).

• As distributed applets for a Web browser (M.Najork, M.H.Brown [1]).

Binaries / Documentation
http://www.research.digital.com/SRC/personal/Luca_Cardelli/home.html



Obliq March 17, 2003 4:59 pm 37 of 49

References
[1] M.Najork and M.H.Brown, Distributed Active Objects. Report, Digital Equipment

Corporation, Systems Research Center. 1996.

[2] Bharat, K. and M.H. Brown, Building distributed applications by direct manipula-
tion. Proc. UIST’94. 1994.

[3] Bharat, K. and L. Cardelli: Migratory applications, Proc. of the ACM Symposium on
User Interface Software and Technology '95. 133-142. 1995.

[4] Bharat, K. and L. Cardelli, Distributed applications in a multimedia setting, Proc. of
the First International Workshop on Hypermedia Design. 185-192. Montpelier France,
1995.

[5] Birrell, A.D., G. Nelson, S. Owicki, and E. Wobber, Network objects. Proc. 14th Sym-
posium on Operating Systems Principles. 1993.

[6] Brown, M.H., Report on the 1993 SRC algorithm animation festival. Report n.126.
Digital Equipment Corporation, Systems Research Center. 1994.

[7] Brown, M.H. and J.R. Meehan, The FormsVBT Reference Manual. Unpublished.
Digital Equipment Corporation, Systems Research Center. 1994.

[8] Brown, M.H. and M.A. Najork, Distributed active objects. Report n.141. Digital
Equipment Corporation, Systems Research Center. 1996

[9] Cardelli, L., A language with distributed scope. Computing Systems, 8(1), 27-59. MIT
Press. 1995. Also: Proc. 22nd Annual ACM Symposium on Principles of Programming



Obliq March 17, 2003 4:59 pm 38 of 49

Languages, 286-297. 1995.

[10] Freeman, S.M.G. and M.S. Manasse, Adding digital video to an object-oriented user
interface toolkit. Proc. ECOOP’94. Springer-Verlag. 1994.

[11] Najork, M, Obliq-3D tutorial and reference manual. Report 129. Digital Equipment
Corporation, Systems Research Center. 1994.

[12] Najork, M. and M.H. Brown, A library for visualizing combinatorial structures.
Proc. IEEE Visualization’94. 1994.



Obliq March 17, 2003 4:59 pm 39 of 49

A Compute Server
A
var q = proc() end;
net_export("computeServer", Namer,

{ rexec => meth(s,p) q:=p; p() end }

    B
let cs = net_import("computeServer", Namer);
var x = 3;
cs.rexec(proc() x:=x+1 end);
x;   (* is now 4 *)

q;   (* is now proc() x:=x+1 end *)
q();

x;   (* is now 5 *)



Obliq March 17, 2003 4:59 pm 40 of 49

Before the invocation:

After its completion:

q =          proc () end

{rexec =>

}

cs = 

x =

proc () x:=x+1 end  
where  x = 

meth (s,p) q:=p; p() end  
where  q = 

A B

3

q = cs = 

x =

meth (s,p) q:=p; p() end  
where  q = 

{rexec =>

}

proc () x:=x+1 end  
where  x = 

A B

4



Obliq March 17, 2003 4:59 pm 41 of 49

CONCURRENCY IN OBLIQ

We need to deal with concurrency because it is implied by distributed objects.

Concurrency is based on the Modula-3 thread/mutex model.

It is enhanced with object-based “self serialization” (a way to avoid trivial deadlocks between
sibling methods).

It is also enhanced with object-based conditional synchronization.



Obliq March 17, 2003 4:59 pm 42 of 49

Self-inflicted Operations
Let op(o) be either a select, update, clone, or redirection operation. Then:

"op(o)" is self-inflicted
iff "o" is the same object as the self of the current method (if any).

Here, the current method is the last method that was invoked in the current thread of control and
has not yet returned. Procedure calls do not change or mask the current method, even when they
have not yet returned.

Moreover, "op(o)" is external iff it is not self-inflicted.

Ex.:   meth(s) [s.x, s.x.y] end

Here s.x is self inflicted, and (s.x).y is self-inflicted if s.x returns self.

N.B. it is possible to detect this condition at run-time with a simple test.



Obliq March 17, 2003 4:59 pm 43 of 49

Protected Objects
It is useful to protect objects against certain external operations, to safeguard their internal
invariants. Protection is particularly important, for example, to prevent clients from overriding
methods of network services, or from cloning servers. Still, protected objects should be allowed
to modify their own state.

A protected object is an object that is protected against external update, cloning, and redirection,
but not against self-inflicted update, cloning, and redirection. 

{ protected, x1 => a1, ... , xn => an }

Methods of a protected object can update sibling fields through self, but external operations can-
not modify such fields.

Note that a solution to the protection problem based on “private” fields would not address
protection against cloning and redirection.



Obliq March 17, 2003 4:59 pm 44 of 49

Serialized Objects
• An Obliq server object can be accessed concurrently by multiple remote client threads. More-

over, local concurrent threads may be created explicitly. To prevent race conditions, it must
be possible to control concurrent access to objects and other entities with state.

• We say that an object is serialized when 

~ (1) in presence of multiple threads, at most one method of the object can be executing at
any given time, but we want to ensure that:

~ (2) a method may call a sibling through self without deadlock. 

Note that requirement (2) does not contradict invariant (1), because an invocation through
self suspends a method before activating a sibling.

• Solution: serialized objects have a hidden associated mutex, called the object mutex. An ob-
ject mutex serializes the execution of field selection, method invocation, update, cloning, and
redirection operations on its host object. 

External operations always acquire the mutex, and release it on completion.
Self-inflicted operations never acquire the mutex of their object. 



Obliq March 17, 2003 4:59 pm 45 of 49

• Conditional synchronization can be applied to the implicit object mutexes. A new condition
c can be created by condition()" and signaled by signal(c). A special watch state-
ment allows waiting on a condition in conjunction with the hidden mutex of an object. This
statement must be used inside the methods of a serialized object; hence, it is always evaluated
with the object mutex locked:

watch c until guard end

• The watch statement evaluates the condition, and, if the guard evaluates to true, terminates
leaving the mutex locked. If the guard is false, the object mutex is unlocked (so that other
methods of the object can execute) and the thread waits for the condition to be signaled.
When the condition is signaled, the object mutex is locked and the boolean guard is evaluated
again, repeating the process.

• There is no automatic serialization for variables or arrays.

• The full Modula-3 thread interface is available for hand-crafting other synchronization mech-
anisms.



Obliq March 17, 2003 4:59 pm 46 of 49

Obliq Concurrency Primitives

mutex()

lock a1 do a2 end
fork(a1,a2)

join(a)

condition()

signal(a)

broadcast(a)

wait(a1,a2)



Obliq March 17, 2003 4:59 pm 47 of 49

watch a1 until a2 end

Here, "a1" is a condition and "a2" is a boolean expression. This statement waits for "a2" to
become true, and then terminates. Whenever "a2" is found to be false, the statement waits for
"a1" to be signaled before trying again. The statement is equivalent to:

let x=a1; 
loop 

if a2 then exit else wait(mu,x) end 
end 

where "x" does not occur in "a2", and "mu" is the hidden mutex of the self "s" of the textually
enclosing method. The "watch" operation must be self-inflicted with respect to such "s", if
any, or an error is reported.



Obliq March 17, 2003 4:59 pm 48 of 49

A Serialized Queue
let queue =

  (let nonEmpty = condition();  
   var q = [];           (* the (hidden) queue data *)

   {protected, serialized,
   write =>

        meth(s, elem)
          q := q @ [elem];   (* append elem to tail *)

          signal(nonEmpty);  (* wake up readers *)

        end,
      read =>
        meth(s)
          watch nonEmpty     (* wait for writers *)
          until #(q)>0 end;  (* check size of queue *)
          let q0 = q[0];       (* get first elem *)
          q := q[1 for #(q)-1];(* remove from queue *)

          q0;                  (* return first elem *)

        end; });



Obliq March 17, 2003 4:59 pm 49 of 49

Let us see how this queue can be used. Suppose a reader is activated first when the queue is still
empty. To avoid an immediate deadlock, we fork a thread running a procedure that reads from
the queue; this thread blocks on the watch statement. The reader thread is returned by the fork
primitive, and bound to the identifier t:

let t = (* fork a reader t, which blocks *)

  fork(proc() queue.read() end, 0); 

Next we add an element to the queue, using the current thread as the writer thread. A non-empty
condition is immediately signaled and, shortly thereafter, the reader thread returns the queue el-
ement. 

queue.write(3); (* cause t to read 3 *)

The reader thread has now finished running, but is not completely dead because it has not deliv-
ered its result. To obtain the result, the current thread is joined with the reader thread:

let result = join(t); (* get 3 from t *)

In general, join waits until the completion of a thread and returns its result.


